Introduction to the Summer Projects: “Brain Slap!”

brainSlapGame-based learning is becoming codified by academics around the country, but there are many aspects of gaming that are still difficult to measure. Despite roughly ten years of academic research on gaming, most operational definitions for games fail to generalize, and new games are devised daily to stretch and break the definition du jour. While psychology has done a good job of developing a method for describing human behavior (i.e., psychophysics), we shouldn’t despair if we can’t develop a grand unification theory of “gaminess.”

While psychology has done a good job of developing a method for describing human behavior (i.e., psychophysics), we shouldn’t despair if we can’t develop a grand unification theory of “gaminess.”

There is a race to determine which game mechanics are the most relevant and effective for education. Perhaps the most popular game mechanic in academic circles is “flow,” the act of adjusting task difficulty in accordance with player performance. We decided to take a closer look at flow in the context of game-based learning.

Previously, we designed a simple card game to teach students about structure-function relationships in neuroscience. The first iteration of our game was a fast-paced and very fun. However, our data analysis revealed that the students were performing at ceiling levels, which meant they could have been pushed to learn more content. Admittedly, we created the game under a serious time constraint and didn’t incorporate flow into our game.

Our hastiness actually resulted in an opportunity for us to quantify the effects of flow. Our first iteration serves as a baseline to which we can compare subsequent versions of the game that include flow. Specifically, we are interested in the speed-accuracy trade offs that occur when task difficulty increases. In cognitive psychology, accuracy is typically inversely proportional to speed. However, attention and motivation also contribute to this relationship. Accuracy and speed can improve in proportion when a student is appropriately engaged, and we predict that games with flow mechanics will improve engagement and, in turn, improve speed and accuracy. The poster for the original iteration of the game follows:

PorshaCookOUR2013

Leave a Reply